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Conditional expectation

Let (X ,A, p) be a probability space and let B ⊆ A be a σ-subalgebra.

Let
f : X → R be an A-measurable integrable map.
The conditional expectation of f is a B-measurable integrable map
E[f | B] : X → R such that for all B ∈ B,∫

B

f (x)p(dx) =

∫
B

E[f | B](x)p(dx).
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Conditional expectation

Example: f : [0, 2π] → R : x 7→ sin(x) and B = {∅, [0, π), [π, 2π], [0, 2π]}.
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Martingales

Let I be a directed poset. Let (X ,A, p) be a probability space and let (Bi )i∈I be
an increasing net of σ-subalgebras of A. (filtered probability space).

A martingale is a collection of integrable maps (fi : X → R) such that fi is
Bi -measurable and such that

fi = E[fj | Bi ] for i ≤ j .

Remark: If the collection of σ-subalgebras is decreasing, we talk about a
backwards filtered probability space and backwards martingales.

Paolo Perrone and Ruben Van Belle Convergence of martingales via enriched dagger categories 17 June 2024, Oxford 5 / 40



Martingales

Let I be a directed poset. Let (X ,A, p) be a probability space and let (Bi )i∈I be
an increasing net of σ-subalgebras of A. (filtered probability space).
A martingale is a collection of integrable maps (fi : X → R) such that fi is
Bi -measurable and such that

fi = E[fj | Bi ] for i ≤ j .

Remark: If the collection of σ-subalgebras is decreasing, we talk about a
backwards filtered probability space and backwards martingales.

Paolo Perrone and Ruben Van Belle Convergence of martingales via enriched dagger categories 17 June 2024, Oxford 5 / 40



Martingales

Let I be a directed poset. Let (X ,A, p) be a probability space and let (Bi )i∈I be
an increasing net of σ-subalgebras of A. (filtered probability space).
A martingale is a collection of integrable maps (fi : X → R) such that fi is
Bi -measurable and such that

fi = E[fj | Bi ] for i ≤ j .

Remark: If the collection of σ-subalgebras is decreasing, we talk about a
backwards filtered probability space and backwards martingales.

Paolo Perrone and Ruben Van Belle Convergence of martingales via enriched dagger categories 17 June 2024, Oxford 5 / 40



Martingales
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Martingales

Let n ∈ [2,∞).

Theorem

Let (fi )i be an Ln-bounded martingale on a filtered probability space
(X , (Bi )i ,A, p), then there exists an f ∈ Ln(X ,A, p) such that:

1 E[f | Bi ] = fi , and

2 fi → f in Ln.

Remark: There is a similar theorem for backwards martingales.
Remark: The result says something about both a categorical limit (common
refinement) and a topological limit.
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The category Krn and the functors Ln

Let (X ,A, p) and (Y ,B, q) be probability spaces.

A Markov kernel k : X → Y is
measure-preserving if ∫

X

k(B | x)p(dx) = q(B).

Two Markov kernels k1, k2 : X → Y are p-almost surely equal if for every B ∈ B

k1(B | −) = k2(B | −) p-almost surely.
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The category Krn and the functors Ln

The category Krn has

essentially standard Borel probability spaces as objects;

equivalence classes of almost surely equal measure-preserving Markov kernels
as morphisms.

The category Ban≤1 has

Banach spaces as objects;

1-Lipschitz linear maps as morphisms

The category Hilb≤1 is the full subcategory of Hilbert spaces .
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The category Krn and the functors Ln

For n ∈ [1,∞], define the functor

Ln : Krnop → Ban≤1

on objects as follows:
(X ,A, p) 7→ Ln(X ,A, p).

For a measure-preserving Markov kernel k : (X ,A, p) → (Y ,B, q) and
f ∈ Ln(Y ,B, q), define

k∗f : X → R : x 7→
∫
X

f (y)k(dy | x).

The assignment f 7→ k∗f defines a 1-Lipschitz linear map

Ln(k) : Ln(Y ,B, q) → Ln(X ,A, p).

Remark: In the case n = 2, this functor factors through Hilb≤1.
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The dagger structure of Krn

Definition

A dagger category is a category C together with a functor (−)+ : Cop → C which
is the identity on objects and such that (f +)+ = f .

Example: Hilb≤1 becomes a dagger category via adjoints of 1-Lipschitz linear
maps.
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The dagger structure of Krn

Let k : (X ,A, p) → (Y ,B, q) be a measure-preserving kernel.

A
measure-preserving kernel k+ : (Y ,B, q) → (X ,A, p) such that for every A ∈ A
and B ∈ B ∫

A

k(B | x)p(dx) =
∫
B

k+(A | y)q(dy)

is called a Bayesian inverse of k.
If (X ,A, p) and (Y ,B, q) are (essentially) standard Borel probability spaces, then
every measure-preserving kernel has an almost surely unique Bayesian inverse.
(Rohklin’s disinitegration theorem)
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The dagger structure of Krn

The assignment k 7→ k+ defines a dagger structure on Krn [1].

Indeed, for every
A and B we have that∫

A

(k+)+(B | x)p(dx) =
∫
B

k+(A | y)q(dy) =
∫
A

k(B | x)p(dx),

which implies k = (k+)+ almost surely.
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The dagger structure of L2

The functor L2 : Krnop → Hilb≤1 preserves the dagger structure, i.e.

Krnop Hilb≤1

Krn Hilbop≤1

L2

(−)+ (−)+

L2

For a measure-preserving kernel k : (X ,A, p) → (Y ,B, q), we have that for every
f ∈ L2(X ,A, p) and g ∈ L2(Y ,B, q)

⟨f , k∗g⟩ = ⟨(k+)∗f , g⟩.

In particular, for π : (X ,A, p) → (X ,B, p) and g = 1B for some B ∈ B, we find∫
B

f dp =

∫
B

(π+)∗f dp.

Therefore (π+)∗f = E[f | B].
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Overview

Dagger Idempotents Order
∨ ∧

Krn Bayesian inverse
Hilb≤1 adjoints
L2 ✓

Enrichment Levi property
Krn

Hilb≤1

L2

Ban≤1

Ln
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Idempotents in Hilb≤1 and Krn

Definition
An endomorphism e : X → X in a dagger category C is a dagger idempotent if

e ◦ e = e = e+.

Definition
A dagger splitting of a dagger idempotent in a dagger category C is a pair of
morphisms (π : X → A, ι : A → X ) such that

π ◦ ι = idA , ι ◦ π = e and π+ = ι.
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Idempotents in Hilb≤1 and Krn

Example: Let X be a Hilbert space and let e : X → X be a dagger idempotent.

Then e has to be the orthogonal projection pIm(e).
A dagger splitting of e is given by the inclusion ι : Im(e) → X and the orthogonal
projection π : X → Im(e).

{Dagger Idempotents} ∼= {Closed subspaces}
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Idempotents in Hilb≤1 and Krn

Example: Let (X ,A, p) be an essentially standard Borel probability space and let
B ⊆ A be a σ-subalgebra.

Let π : (X ,A, p) → (X ,B, p) be the setwise identity,
then eB := π+ ◦ π is a dagger idempotent.

e(−) : {σ-subalgebras} → {Dagger idempotents} .

Proposition

The map e(−) is surjective.

{eq. classes of σ-subalgebras} ∼= {Dagger idempotents}

Where B1 ∼ B2 if and only if eB1 = eB2 . Every equivalence class [B] has a finest
element, the invariant σ-algebra IeB [2].
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Ordering of idempotents in Hilb≤1 and Krn

Definition
For dagger idempotents e1, e2 : X → X in a dagger category C, we write e1 ⊑ e2 if
and only if e1 ◦ e2 = e1.

This defines a partial order on the set of dagger idempotents.
Example: For closed subspaces A1 and A2 of a Hilbert space X , we see that

pA1 ◦ pA2 = pA1

if and only if A1 ⊆ A2. We have an isomorphism of posets:

({Dagger Idempotents} ,⊑) ∼= ({Closed subspaces} ,⊆)
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Ordering of idempotents in Hilb≤1 and Krn

Definition

Let (X ,A, p) be an essentially standard Borel probability space and let B1 and B2

be σ-subalgebras.

We say that B1 is almost surely courser than B2 if for every B1 ∈ B1, there
exists a B2 ∈ B2 such that

p(B1 △ B2) = 0.

We write B1 ≲ B2.

Remark: B1 ⊆ B2 ⇒ B1 ≲ B2
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Ordering of idempotents in Hilb≤1 and Krn

Proposition

We have that eB1 ◦ eB2 = eB1 if and only if B1 ≲ B2 if and only if IeB1
⊆ IeB2

.

This induces an isomorphism of posets:

({eq. classes of σ-subalgebras} ,≲) ∼= ({Dagger idempotents} ,⊑) .
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Directed suprema and infima of idempotents

Example:

Let X be a Hilbert space and consider a cofiltered collection (ei : X → X )i of
dagger idempotents.

This corresponds to a cofiltered collection (Ai ) of closed subspaces of X ,
whose supremum is A :=

⋃
i Ai . Therefore

∨
i ei = pA.

Similarly, for a filtered collection (ei )i , we have
∧

i ei = p⋂
i Ai

.
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Directed suprema and infima of idempotents

Let (X ,A, p) be an essentially standard Borel probability space.

Proposition

Let (Bi )i be a cofiltered collection of σ-subalgebras of A ordered by
inclusion,then ∨

i

eBi = eσ(
⋃

i Bi).

Let (Bn)n be a decreasing sequence of σ-subalgebras of A ordered by
inclusion , then ∧

n

eBn = e⋂
n Bn

.

For a genenaral filtered collection (Bi )i ordered by inclusion, we can only say
that ∧

i

eBi = e⋂
i IeBi

⊒ e⋂
i Bi

.
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Directed suprema and infima of idempotents

Proposition

Let (ei )i be a filtered collection of dagger idempotents with dagger splittings
(πi : X → Ai , ιi : Ai → X ) and let e : X → X be another dagger idempotent with
dagger splitting (π : X → A, ι : A → X ) in a dagger category C.

Then e =
∨

i ei if and only if the following diagram is a limiting cone

A

A1 A2 A3 . . .

π1◦ι
π3◦ι

π1◦ι2 π2◦ι3
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L2 preserves directed suprema and infima

Proposition

The functor L2 preserves directed suprema and infima.

Let (Bn)n be an increasing sequence of σ-subalgebras of A with join B, i.e. a limit
diagram in Krn

(X ,B0, p) (X ,B1, p) (X ,B2, p) . . . (X ,B, p)π0,1 π1,2

From the previous two propositions, it follows that

L2(X ,B0, p) L2(X ,B1, p) L2(X ,B2, p) . . . L2(X ,B, p)
π∗
0,1 π∗

1,2

is a colimit diagram.
Since L2 is a dagger functor, we also have that the following diagram is a limiting
cone.

L2(X ,B0, p) L2(X ,B1, p) L2(X ,B2, p) . . . L2(X ,B, p)
(π+

0,1)
∗ (π+

1,2)
∗
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Martingale convergence I

Theorem

Let (fi )i be an L2-bounded martingale on a filtered probability space
(X , (Bi )i ,B, p), then there exists an almost surely unique f ∈ L2(X ,B, p) such
that

E[f |Bi ] = fi p-almost surely.

An L2-bounded martingale forms the following cone in Hilb≤1.

R

L2(X ,B0, p) L2(X ,B1, p) L2(X ,B2, p) . . . L2(X ,B, p)

f0 f1 f2

(π+
0,1)

∗ (π+
1,2)

∗

Paolo Perrone and Ruben Van Belle Convergence of martingales via enriched dagger categories 17 June 2024, Oxford 26 / 40



Martingale convergence I

Theorem

Let (fi )i be an L2-bounded martingale on a filtered probability space
(X , (Bi )i ,B, p), then there exists an almost surely unique f ∈ L2(X ,B, p) such
that

E[f |Bi ] = fi p-almost surely.

An L2-bounded martingale forms the following cone in Hilb≤1.

R

L2(X ,B0, p) L2(X ,B1, p) L2(X ,B2, p) . . . L2(X ,B, p)
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f

(π+
0,1)

∗ (π+
1,2)

∗

Remark: Dually we have a backwards martingale convergence result. Here we
need to be careful and take B to be the infimum in the idempotent order.
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Overview

Dagger Idempotents Order
∨ ∧

Krn Bayesian inverse σ-subalgebras ≲ [σ (
⋃

i Bi )] [
⋂

n Bn]

Hilb≤1 adjoints closed subspaces ⊆
⋃

i Ai

⋂
i Ai

L2 ✓ - ✓ ✓ ✓

Enrichment Levi property
Krn

Hilb≤1

L2

Ban≤1

Ln
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Topological enrichment

Let X and Y be topological spaces.

Let X ⊗ Y be the set X × Y endowed with the final topology generated by
the maps

((x ,−) : Y → X × Y )x∈X

and
((−, y) : X → X × Y )y∈Y .

Let [X ,Y ] be the set of continuous maps toghether with the topology of
poinwise convergence.

These form a monoidal closed structure on Top.
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Hilb≤1 and Ban≤1 are enriched over Top

For Banach spaces X and Y , we can give the set of 1-Lipschitz linear maps
Ban≤1(X ,Y ) a variation of the strong operator topology.

A net (fλ : X → Y )λ
converges to f if and only if for every x ∈ X ,

∥fλ(x)− f (x)∥Y → 0.

This makes Ban≤1 a topologically enriched category. Similarly we can enrich
Hilb≤1 over Top.
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Krn is enriched over Top

Let (X ,A, p) and (Y ,B, q) be essentially standard Borel probability spaces.

We
say that a net (kλ : X → Y )λ of measure-preserving kernels converges to a
measure-preserving kernel k : X → Y if and only if∫

X

|kλ(B|x)− k(B|x)|p(dx) → 0 for all B ∈ B

This defines a topology on Krn((X ,A, p), (Y ,B, q)) called the one-sided
topology and enriches Krn over Top.
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Krn is enriched over Top

Now we can look at the subspace of Krn((X ,A, p), (X ,A, p)) of dagger
idempotents.

The subspace is closed.

A net (eBλ
: X → X )λ converges to eB if and only if for every

f ∈ L1(X ,A, p):
E[f | Bλ] → E[f | B] in L1.
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Ln is enriched over Top

The following result implies that Ln is enriched, but is stronger and will be
important in the next part.

Proposition

A net of measure-preserving kernels (kλ)λ converges to k in
Krn((X ,A, p), (Y ,B, q)) if and only if (k∗

λ)λ converges to k∗ in
Ban≤1(L

n(Y ,B, q), Ln(X ,A, p)).
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Overview

Dagger Idempotents Order
∨ ∧

Krn Bayesian inverse σ-subalgebras ≲ [σ (
⋃

i Bi )] [
⋂

n Bn]

Hilb≤1 adjoints closed subspaces ⊆
⋃

i Ai

⋂
i Ai

L2 ✓ - ✓ ✓ ✓

Enrichment Levi property
Krn one-sided

Hilb≤1 strong operator
L2 ✓

Ban≤1 strong operator
Ln ✓
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Idempotent Levi property

Recall that every increasing bounded sequence in R converges to its supremum.

Definition
We say that a topologically enriched dagger category has the idempotent Levi
property if every increasing (decreasing) net (eλ)λ of dagger idempotents that
has a supremum (infimum), converges topologically to its supremum (infimum)
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Idempotent Levi property

Proposition

Hilb≤1 has the idempotent Levi property.

Proposition

Krn has the idempotent Levi property.

Proof: Let (eBλ
)λ be an increasing net of dagger idempotents with a

supremum.

Then (e∗Bλ
)λ is an increasing net with a supremum, hence it

converges topologically.Therefore, so does (eBλ
)λ.
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Overview

Dagger Idempotents Order
∨ ∧

Krn Bayesian inverse σ-subalgebras ≲ [σ (
⋃

i Bi )] [
⋂

n Bn]

Hilb≤1 adjoints closed subspaces ⊆
⋃

i Ai

⋂
i Ai

L2 ✓ - ✓ ✓ ✓

Enrichment Levi property
Krn one-sided ✓

Hilb≤1 strong operator ✓
L2 ✓ -

Ban≤1 strong operator ×
Ln ✓ -
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Martingale convergence II

Theorem

Let (X , (Bi )i ,B, p) be a filtered probability space and let f ∈ Ln(X ,B, p), then

E[f | Bλ] → E[f | B] in Ln.

Proof: Since
∨

i eBi = eB, we have the idempotent Levi property that eBi → eB
and therefore e∗Bi

→ e∗B. This implies the result.

Theorem

Let (X , (Bi )i ,
∧

i Bi , p) be a backwards filtered probability space and let
f ∈ Ln(X ,B, p), then

E[f | Bλ] → E[f | B] in Ln.
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Conclusion

Using enriched dagger categories we can prove the martingale convergence
theorem.

Theorem

Let n ≥ 2. Let (fi )i be an Ln-bounded martingale on a filtered probability space
(X , (Bi )i ,A, p), then there exists an f ∈ Ln(X ,A, p) such that:

1 E[f | Bi ] = fi , and

2 fi → f in Ln.

This generalizes to vector-valued martingales (see section 7 in [3]).
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