A categorical proof of the Carathéodory extension theorem

Ruben Van Belle

CaCS, September 2022

Ruben Van Belle

A categorical proof of the Carathéodory extension thec

CaCS, September 2022

Let \mathcal{B} be a (Boolean) algebra of subsets of X and let ρ be a premeasure. We would like to extend ρ to a measure on $\sigma(\mathcal{B})$.

Introduction: Carathéodory extension theorem

Let \mathcal{B} be a (Boolean) algebra of subsets of X and let ρ be a premeasure. We would like to extend ρ to a measure on $\sigma(\mathcal{B})$.

Let $(\mu_i)_{i \in I}$ be a directed collection of measures on measurable space X. Then

$$\left(\bigvee_{i\in I}\mu_i\right)(A)=\sup_{i\in I}\mu_i(A).$$

Let $(\mu_i)_{i \in I}$ be a directed collection of measures on measurable space X. Then

$$\left(\bigvee_{i\in I}\mu_i\right)(A)=\sup_{i\in I}\mu_i(A).$$

For measures μ_1 and μ_2 on X,

$$(\mu_1 \vee \mu_2)(A) = \sup \left\{ \sum_{n=1}^{\infty} \mu_1(A_n) \vee \mu_2(A_n) \mid \bigcup_{n=1}^{\infty} A_n = A \right\}.$$

4 A 1

→ Ξ →

- $1. \ \ Categories \ of \ lax \ transformations$
 - 2. Colimits of lax transformations
- 3. Extensions of lax transformations

posets of (outer) (pre)measures suprema of (outer) (pre)measures Carathéodory extension theorem

Categories of lax natural transformations

イロト イヨト イヨト

Let C be a category. Let $H, G : C \to Cat$ be functors and let Σ be a collection of morphisms in C.

A Σ -lax transformation $H \xrightarrow{\sigma} G$ is a lax transformation $H \xrightarrow{\sigma} G$ such that σ_f is an isomorphism for every $f \in \Sigma$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let C be a category. Let $H, G : C \to Cat$ be functors and let Σ be a collection of morphisms in C.

A Σ -lax transformation $H \xrightarrow{\sigma} G$ is a lax transformation $H \xrightarrow{\sigma} G$ such that σ_f is an isomorphism for every $f \in \Sigma$.

The category of Σ -lax transformations $H \rightarrow G$ and modifications is denoted by

 $Lax_{\Sigma}[H, G].$

Let C be a category. Let $H, G : C \to Cat$ be functors and let Σ be a collection of morphisms in C.

A Σ -lax transformation $H \xrightarrow{\sigma} G$ is a lax transformation $H \xrightarrow{\sigma} G$ such that σ_f is an isomorphism for every $f \in \Sigma$.

The category of Σ -lax transformations $H \rightarrow G$ and modifications is denoted by

 $Lax_{\Sigma}[H, G].$

There are inclusion functors

 $[H,G] \rightarrow \mathsf{Lax}_{\Sigma}[H,G] \rightarrow \mathsf{Lax}[H,G].$

Examples of categories of lax natural transformations

A D > A B >

→ Ξ →

1. Measures

Let \mathbf{Set}_c be the category of countable sets and functions.

イロト イヨト イヨト イヨト

1. Measures

Let \mathbf{Set}_c be the category of countable sets and functions. For a countable set A, denote the poset (category)

 $[0,\infty]^{\mathcal{A}}$

by G(A).

< □ > < 同 >

Let \mathbf{Set}_c be the category of countable sets and functions. For a countable set A, denote the poset (category)

$$[0,\infty]^A$$

by G(A). Every function of countable sets $f : A \to B$ induces an order preserving map (functor) $G(f) : G(A) \to G(B)$, defined by the assignment

$$(p_a)_{a\in A}\mapsto \left(\sum_{a\in f^{-1}(b)}p_a\right)_{b\in B}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let \mathbf{Set}_c be the category of countable sets and functions. For a countable set A, denote the poset (category)

$$[0,\infty]^A$$

by G(A). Every function of countable sets $f : A \to B$ induces an order preserving map (functor) $G(f) : G(A) \to G(B)$, defined by the assignment

$$(p_a)_{a\in A}\mapsto \left(\sum_{a\in f^{-1}(b)}p_a\right)_{b\in B}$$

This defines a functor $G : \mathbf{Set}_c \to \mathbf{Cat}$.

 $A \mapsto (A, \mathcal{P}(A)).$

2

< □ > < □ > < □ > < □ > < □ >

 $A \mapsto (A, \mathcal{P}(A)).$

Let (X, S) be a measurable space and consider the functor $F_S := \text{Mble}(X, i-) : \text{Set}_c \to \text{Cat}.$

 $A \mapsto (A, \mathcal{P}(A)).$

Let (X, S) be a measurable space and consider the functor $F_S := \text{Mble}(X, i-) : \text{Set}_c \to \text{Cat}.$ The set (discrete category) Mble(X, i(A)) can be identified with the set of *A*-indexed measurable partitions of *X*.

 $A \mapsto (A, \mathcal{P}(A)).$

Let (X, S) be a measurable space and consider the functor $F_S := \text{Mble}(X, i-) : \text{Set}_c \to \text{Cat}.$

The set (discrete category) Mble(X, i(A)) can be identified with the set of *A*-indexed measurable partitions of *X*.

Under this identification, the function Mble(X, i(f)) corresponds to the assignment

$$(E_a)_{a\in A}\mapsto \left(\bigcup_{a\in f^{-1}(b)}E_a\right)_{b\in B}$$

for a function $f : A \rightarrow B$ of countable sets.

A (10) N (10)

Let M(X, S) be all measures with order

$$\mu_1 \leq \mu_2 :\Leftrightarrow \mu_1(A) \leq \mu_2(A) \text{ for all } A \in \mathcal{S}.$$

< □ > < □ > < □ > < □ > < □ >

2

Let M(X, S) be all measures with order

$$\mu_1 \leq \mu_2 :\Leftrightarrow \mu_1(A) \leq \mu_2(A) \text{ for all } A \in \mathcal{S}.$$

Theorem

 $[F_{\mathcal{S}},G]\simeq M(X,\mathcal{S})$

< □ > < □ > < □ > < □ > < □ >

2

Let $Part_c$ be the category of countable sets and partial functions and let **PartMble** be the category of measurable spaces and partial measurable maps.

Let $Part_c$ be the category of countable sets and partial functions and let **PartMble** be the category of measurable spaces and partial measurable maps. We have functors

 $G: \operatorname{Part}_c \to \operatorname{Cat} : A \mapsto [0, \infty]^A$

and

 $PartMble(X, i-) : Part_c \rightarrow Cat.$

Let $M_{out}(X, S)$ be the poset of outer measures.

2

Let $M_{out}(X, S)$ be the poset of outer measures. Let Σ be the collection of all injective morphisms in **Part**_c.

Let $M_{out}(X, S)$ be the poset of outer measures. Let Σ be the collection of all injective morphisms in **Part**_c.

Theorem

 $[\operatorname{PartMble}(X, i-), G] \simeq M(X, S)$ and $\operatorname{Lax}_{\Sigma}[\operatorname{PartMble}(X, i-), G] \simeq M_{\operatorname{out}}(X, S)$

3. Premeasures

Let $M(X, \mathcal{B})$ be the poset of premeasures on X.

< □ > < □ > < □ > < □ > < □ >

2

Let $M(X, \mathcal{B})$ be the poset of premeasures on X. In a similar way as before, we can define functors $F_X, G : \mathbf{Set}_c \to \mathbf{Cat}$ such that:

Theorem

 $[F_X,G]\simeq M(X,\mathcal{B})$

- 4 回 ト 4 三 ト

- Measures and premeasures are natural transformations;
- **2** Outer measures are Σ -lax transformations.

Colimits of lax natural transformations

イロト イヨト イヨト

э

Proposition

If GA has colimits of shape I for all A and Gf preserves colimits of shape I for all $f \in \Sigma$, then Lax_{Σ}[H, G] has colimits of shape I.

Proposition

If GA has colimits of shape I for all A and Gf preserves colimits of shape I for all $f \in \Sigma$, then Lax_{Σ}[H, G] has colimits of shape I.

In this case the colimit is calculated 'pointwise':

```
(\operatorname{colim}_i \sigma^i)_A(x) = \operatorname{colim}_i(\sigma^i_A(x)),
```

for $A \in C$ and $x \in HA$.

A B M A B M

To obtain more information about colimits in [H, G], we will look for conditions such that

```
i: [H, G] \rightarrow \mathsf{Lax}_{\Sigma}[H, G]
```

is a reflective subcategory.

¹Blackwell, Kelly, Power; *Two-dimensional monad theory*

э

To obtain more information about colimits in [H, G], we will look for conditions such that

$$i:[H,G]
ightarrow {\sf Lax}_{\Sigma}[H,G]$$

is a reflective subcategory.

The inclusion functor $[\mathcal{C},\textbf{Cat}]\to \text{Lax}[\mathcal{C},\textbf{Cat}]$ has left adjoint.¹ This means, there is a functor $H^\#$ such that

 $[H^{\#}, G] \simeq \operatorname{Lax}[H, G].$

¹Blackwell, Kelly, Power; *Two-dimensional monad theory* $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

CaCS. September 2022

To obtain more information about colimits in [H, G], we will look for conditions such that

$$i:[H,G]
ightarrow {\sf Lax}_{\Sigma}[H,G]$$

is a reflective subcategory.

The inclusion functor $[\mathcal{C}, \mathbf{Cat}] \to \mathsf{Lax}[\mathcal{C}, \mathbf{Cat}]$ has left adjoint.¹ This means, there is a functor $H^{\#}$ such that

$$[H^{\#}, G] \simeq \operatorname{Lax}[H, G].$$

There is a natural transformations $\iota: H^{\#} \to H$. Let $\sigma: H \to G$ be a lax natural transformation. This corresponds to a natural transformation $au^{\sigma}: H^{\#}
ightarrow G$.

¹Blackwell, Kelly, Power; *Two-dimensional monad theory* 化口水 化固水 化压水 化压水 CaCS. September 2022 To obtain more information about colimits in [H, G], we will look for conditions such that

$$i:[H,G]
ightarrow {\sf Lax}_{\Sigma}[H,G]$$

is a reflective subcategory.

The inclusion functor $[\mathcal{C}, \mathbf{Cat}] \to \mathsf{Lax}[\mathcal{C}, \mathbf{Cat}]$ has left adjoint.¹ This means, there is a functor $H^{\#}$ such that

$$[H^{\#}, G] \simeq \operatorname{Lax}[H, G].$$

There is a natural transformations $\iota: H^{\#} \to H$. Let $\sigma: H \to G$ be a lax natural transformation. This corresponds to a natural transformation $au^{\sigma}: H^{\#}
ightarrow G$.

¹Blackwell, Kelly, Power; *Two-dimensional monad theory* 化口水 化固水 化压水 化压水 CaCS. September 2022 For an object A in C, define $\overline{\sigma}_A$ as the left Kan extension of τ_A^{σ} along ι_A .

19/34

For an object A in C, define $\overline{\sigma}_A$ as the left Kan extension of τ_A^{σ} along ι_A .

This means

$$\overline{\sigma}_{\mathcal{A}}(x) = \operatorname{colim}(\iota_{\mathcal{A}} \downarrow x \to H^{\#}\mathcal{A} \xrightarrow{\tau_{\mathcal{A}}^{\sigma}} G\mathcal{A}).$$

< □ > < 同 >

For an object A in C, define $\overline{\sigma}_A$ as the left Kan extension of τ_A^{σ} along ι_A .

This means

$$\overline{\sigma}_{A}(x) = \operatorname{colim}(\iota_{A} \downarrow x \to H^{\#}A \xrightarrow{\tau_{A}^{\circ}} GA).$$

We will now look at conditions such that the assignment

 $\sigma\mapsto\overline{\sigma}$

defines a reflector $Lax[H, G] \rightarrow [H, G]$.

Let Φ_1 be a class of categories and let

$$\Phi_2 := \{J \mid D : I \to J \text{ has a cocone for all } I \in \Phi_1\}.$$

Theorem

- Let $H : \mathcal{C} \to \mathbf{Cat}$ be a functor such that:
 - HA is a discrete category for all A,
 - ${f O}$ C has and H preserves limits of shape $(I^{\operatorname{op}})^+$ for $I\in\Phi_1$,
 - **③** C has and H preserves pullbacks.

Let Φ_1 be a class of categories and let

$$\Phi_2 := \{J \mid D : I \to J \text{ has a cocone for all } I \in \Phi_1\}.$$

Theorem

- Let $H : C \rightarrow Cat$ be a functor such that:
 - HA is a discrete category for all A,
 - **2** C has and H preserves limits of shape $(I^{op})^+$ for $I \in \Phi_1$,
 - **③** C has and H preserves pullbacks.
- Let $G : \mathcal{C} \to \mathbf{Cat}$ be a functor such that:
 - GA has colimits of shape $J \in \Phi_2$,
 - **2** *Gf* preserves colimits of shape $J \in \Phi_2$.

Let Φ_1 be a class of categories and let

$$\Phi_2 := \{J \mid D : I \to J \text{ has a cocone for all } I \in \Phi_1\}.$$

Theorem

- Let $H : \mathcal{C} \to \mathbf{Cat}$ be a functor such that:
 - HA is a discrete category for all A,
 - **2** C has and H preserves limits of shape $(I^{op})^+$ for $I \in \Phi_1$,
 - **③** C has and H preserves pullbacks.
- Let $G : \mathcal{C} \to \mathbf{Cat}$ be a functor such that:
 - GA has colimits of shape $J \in \Phi_2$,
 - **2** *Gf* preserves colimits of shape $J \in \Phi_2$.

Then $i : [H, G] \rightarrow Lax[H, G]$ is reflective.

4 日本 4 周本 4 日本 4 日本

For some class of categories Φ .

Theorem

Let $H : \mathcal{C} \to \mathbf{Cat}$ be a functor such that:

HA is a discrete category for all A,

 $\ 2 \ \iota_{\mathcal{A}}/x \in \Phi,$

- $\ \, {\mathfrak O} \ \, \iota_A/x \to \iota_B/Hg(x) \ \, {\rm is \ final \ for \ all \ \, } g:A \to B \ \, {\rm in \ } \Sigma.$
- Let $G : \mathcal{C} \to \mathbf{Cat}$ be a functor such that:
 - GA has colimits of shape $J \in \Phi$,

2 *Gf* preserves colimits of shape $J \in \Phi$ for all $f \in \Sigma$.

Then $i : [H, G] \rightarrow Lax_{\Sigma}[H, G]$ is reflective.

Suppose the conditions of the theorem are satisfied.

Corollary

If GA has colimits of shape I, then [H, G] has colimits of shape I and

 $\operatorname{colim}_{[H,G]}\sigma_i \simeq \overline{\operatorname{colim}_{\operatorname{Lax}[H,G]}\sigma_i}.$

If $I \in \Phi_2$, then $\operatorname{colim}_{[H,G]}\sigma_i \simeq \operatorname{colim}_{\operatorname{Lax}[H,G]}\sigma_i$.

Suprema of (outer) (pre)measures

イロト イヨト イヨト

2

Let (X, S) be a measurable space and let F_S and G as in the example of measures.

イロト イヨト イヨト

Let (X, S) be a measurable space and let F_S and G as in the example of measures. Let $\Phi_1 := \{\{\bullet \quad \bullet\}\}$.

э

24 / 34

Let (X, S) be a measurable space and let F_S and G as in the example of measures. Let $\Phi_1 := \{\{\bullet \quad \bullet\}\}$.

We find that \mathbf{Set}_c has and F_S preserves pullbacks and that GA is cocomplete and Gf preserves sifted colimits.

Let (X, S) be a measurable space and let F_S and G as in the example of measures. Let $\Phi_1 := \{\{\bullet \quad \bullet\}\}$. We find that **Set**_c has and F_S preserves pullbacks and that GA is cocomplete and Gf preserves sifted colimits.

Proposition

The poset M(X, S) is complete and $M(X, S) \to \text{Lax}[F_S, G]$ is reflective. For a directed collection $(\mu_i)_{i \in I}$ of measures

$$\left(\bigvee_{i\in I}\mu_i\right)(E)=\sup_{i\in I}\mu_i(E),$$

and for measures μ_1 and μ_2 ,

$$(\mu_1 \vee \mu_2)(E) = \sup \left\{ \sum_{n=1}^{\infty} \mu_1(E_n) \vee \mu_2(E_n) \mid \bigcup_{n=1}^{\infty} E_n = E \right\}.$$

Remark: We find a similar result for premeasures.

Ruben Van Belle

Proposition

The poset $M_{out}(X, S)$ is complete and suprema are computed pointwise. We also have that $M(X, S) \rightarrow M_{out}(X, S)$ is reflective.

4 A >

- Measures and premeasures are natural transformations,
- Outer measures are lax natural transformations
- The assignment $\sigma \mapsto \overline{\sigma}$ defines, under certain conditions, a reflector $Lax_{\Sigma}[H, G] \rightarrow [H, G]$.
 - $M(X, S) \subseteq M_{out}(X, S)$ is reflective,
 - ► $(\mu_1 \vee \mu_2)(E) = \sup \left\{ \sum_{n=1}^{\infty} \mu_1(E_n) \vee \mu_2(E_n) \mid \bigcup_{n=1}^{\infty} E_n = E \right\}.$

Extensions of lax natural transformations

イロト イヨト イヨト

э

Extensions of lax natural transformations

For functors $F, G, H : C \rightarrow Cat$ and (lax) natural transformations

we are looking for the right Kan extension

Proposition

Suppose all categories are small. Suppose *GA* is cocomplete for all *A* and *Gf* is cocontinuous for all $f \in \Sigma$, then

```
Lax_{\Sigma}[H, G] \xrightarrow{-\circ\kappa} Lax_{\Sigma}[F, G]
```

has a right adjoint.

A D b 4 A b

E 6 4 E 6

Let (X, \mathcal{B}) be a premeasurable space and let $F_{\mathcal{B}}$ and $F_{\sigma(\mathcal{B})}$ as in the example of outer measures. There is a natural transformation $\kappa : F_{\mathcal{B}} \to F_{\sigma(\mathcal{B})}$.

Corollary

The restriction $M_{out}(X, \sigma(\mathcal{B})) \to M_{out}(X, \mathcal{B})$. has a right adjoint $(-)^*$. Furthermore,

$$\rho^* \mid_{\mathcal{B}} = \rho.$$

Let κ be a natural transformation and with conditions as before. By an adjoint lifting theorem²:

Proposition

There is a natural transformation

²Johnstone; Adjoint lifting theorems for categories of algebras $\rightarrow \langle a \rangle \rightarrow \langle a \rangle \rightarrow \langle a \rangle \rightarrow \langle a \rangle$

Ruben Van Belle

A categorical proof of the Carathéodory extension thec

CaCS, September 2022 31 / 34

Let κ be a natural transformation and with conditions as before. By an adjoint lifting theorem^2:

Proposition

There is a natural transformation

If α is an isomorphism, then the right adjoint $(-)^*$ can be lifted to a right adjoint for $[H, G] \xrightarrow{-\circ\kappa} [F, G]$.

Corollary

The restriction $M(X, \sigma(\mathcal{B})) \to M(X, \mathcal{B})$ has a right adjoint $(-)^*$.

Proof.

We need to show that α is an isomorphism.

This requires some measure theory.

Theorem (Carathéodory extension theorem)

Every premeasure ρ can be extended to a measure.

- Measures and premeasures are natural transformations,
- Outer measures are lax natural transformations
- The assignment $\sigma \mapsto \overline{\sigma}$ defines, under certain conditions, a reflector $Lax_{\Sigma}[H, G] \rightarrow [H, G]$.
 - $M(X, S) \subseteq M_{out}(X)$ is reflective,
 - $(\mu_1 \vee \mu_2)(E) = \sup \left\{ \sum_{n=1}^{\infty} \mu_1(E_n) \vee \mu_2(E_n) \mid \bigcup_{n=1}^{\infty} E_n = E \right\}.$
- $\bullet\,$ Under certain conditions, we can Kan extend $\Sigma\text{-lax}$ transformations.
 - We can extend (outer) premeasures on B to (outer) measures on σ(B) (Carathéodory).