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1.1 Category theory
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Categories, functors and natural transformations

Definition: A category C is a collection of objects and for every pair of objects
(A,B) a collection C(A,B) of morphisms between them together with a
composition operation.

Examples:

Set is the category of sets and functions.

Grp is the category of groups and group homomorphisms.

Mble is the category of measurable spaces and measurable maps.

Prob is the category of probability spaces and measure-preserving maps

A category that has precisely one object is a monoid.

Every parially ordered set is a category

Cat is the category of categories and functors.

The functor category [C,D] of functors C → D and natural transformations.
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Categories, functors and natural transformations

Let C and D be categories.

Definition: A functor F : C → D is an assignment on objects and a
composition-preserving assignment on morphisms.
Examples:

The forgetful functor U : Prob → Mble sends a probability space (Ω,F ,P)
to its underlying measurable space (Ω,F).

The functor Top → Mble that sends a topological space (X , T ) to the
(X , σ(T )).

The functor Top → Grpd that sends a topological space X to its
fundamental groupoid π1(X ).

The Giry functor G : Mble → Mble that sends a measurable space (Ω,F) to
the space of all probability measures on (Ω,F).

For an object A in C, there is a functor C(A,−) : C → Set that sends B to
the set of morphisms from A to B.
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Categories, functors and natural transformations

Let F and G be functors between categories C and D.

Definition: A natural transformation τ : F → G is a collection of morphisms
(τC : Fc → Gc)c∈C such that

Fc Gc

Fd Gd

τc

τd

Ff Gf

commutes for all morphisms f : c → d .
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Categories, functors and natural transformations

Examples:

Let 1 : Mble → Mble be the identity functor and let G : Mble → Mble be
the Giry functor.

For a measurable space X , there is a map

ηX : X → GX : x 7→ δx .

These form a natural transformation η : 1 → G.
Let g : A2 → A1 be a morphims in C. For every object B there are functions

Hom(A1,B) → Hom(A2,B) : f 7→ f ◦ g .

These form a natural transformation C(A1,−) → C(A2,−). By the Yoneda
lemma, every such natural transformation is of this form.
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Categories, functors and natural transformations

C E

D

Categories
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Categories, functors and natural transformations

C E

D

F

G H

K

Categories

Functors
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Categories, functors and natural transformations

C E

D

F

G H

K

τ

γ

Categories

Functors

Natural transformations
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Universal constructions

Universal constructions are objects that are optimal in some sense.

We can think
them as maximal or minimal approximations. Their maximality/minimality implies
uniqueness up to isomorphism. These are usually limits and colimits (ends and
coends).
Examples:

Products in Set: For sets A and B, there are functions π1 : A× B → A and
π2 : A× B → B. For any other object C with morphims p1 : C → A and
p2 : C → B, there is a unique morphism C → A× B such that

C

A× B

A B

p1 p2

π1 π2

commutes.
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Universal constructions

Suprema (colimits): Let S ⊂ R be a bounded, non-empty subset.

We have

s ≤ supS

for all s.
Suppose s ≤ r for all s, then

supS ≤ r

.
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Universal constructions

Filtrations (filtered limits): Let (Ω,F , (Fn)n∈N,P)) be a filtered probability
space.

(Ω,F1,P |F1) (Ω,F2,P |F2) . . . (Ω,F ,P)
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Universal constructions

Filtrations (filtered limits): Let (Ω,F , (Fn)n∈N,P)) be a filtered probability
space. Then there exists a unique

(Ω̃, F̃ , P̃)

(Ω,F1,P |F1) (Ω,F2,P |F2) . . . (Ω,F ,P)
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1.2 Kan extensions
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Universal property

Let F : C → E and G : C → D be functors.

C E

D

F

G
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Universal property

Let F : C → E and G : C → D be functors.
The right Kan extension of F along G is a functor H : D → E together with a
natural transformation ϵ : H ◦ G ⇒ F .

C E

D

F

G
H
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Universal property

Let F : C → E and G : C → D be functors.
The right Kan extension of F along G is a functor RanGF : D → E together
with a natural transformation ϵ : RanGF ◦ G ⇒ F .
Such that for every other functor H̃ : D → E with a natural transformation
ϵ̃ : H̃ ◦ G ⇒ F ,

there exists a unique natural transformation γ : RanGF → H̃ such
that

C E C E

=

D D

F

G H̃ G

F

RanGF

H̃

ϵ̃ ϵ
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Kan extensions using limits and ends

For functors F : C → E and G : C → D.

C E

D

G

F

Let d be an object in D,

RanGF (d) = lim(d ↓ G → C F−→ E)

=

∫
c∈C

[C(d ,Gc),Fc]

Ruben Van Belle Kan extensions in probability theory QF73 20 / 44



Kan extensions using limits and ends

For functors F : C → E and G : C → D.

C E

D

G

F

Let d be an object in D,

RanGF (d) = lim(d ↓ G → C F−→ E)

=

∫
c∈C

[C(d ,Gc),Fc]

Ruben Van Belle Kan extensions in probability theory QF73 20 / 44



Kan extensions using limits and ends

For functors F : C → E and G : C → D.

C E

D

G

F

Let d be an object in D,

RanGF (d) = lim(d ↓ G → C F−→ E)

=

∫
c∈C

[C(d ,Gc),Fc]

Ruben Van Belle Kan extensions in probability theory QF73 20 / 44



Example

Let A and B be partially ordered sets. Let f : A → R and g : B → R be
order-preserving maps.

A R

B

g

f

Then for b ∈ B,

Rang f (b) = lim(b ↓ g → A
f−→ R)

= inf{f (a) | b ≤ g(a)}
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2 The Giry functor as a Kan extensions
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The Giry functor

Let X be a measurable space.

Define

GX := {probability measures on X}

together with the σ-algebra generated by the evaluation maps

ev : GX → [0, 1] : P 7→ P(A).

For a measurable map f : X → Y , define Gf : GX → GY by the assignment

P 7→ P ◦ f −1.

This defines a functor G : Mble → Mble, and is called the Giry functor.
Remark: This endofunctor is the underlying functor of the Giry monad.
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The Giry functor as Kan extension

Define the functor g as

Setc → Mble
G−→ Mble.

Theorem
The Giry functor G is the right Kan extension of g along itself.

Setc Mble

Mble

g

g
G

Meaning: Probability measures arise naturally as the categorical extension of the
more intuitive probability measures on countable sets.
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Codensity monads

Any right Kan extension along itself can be given a canonical monad structure,
these are codensity monads.

C D

D

F

F

RanFF

The Giry monad arises as a codensity monad, by the previous result.
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3.1 Radon-Nikodym theorem
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Radon-Nikodym theorem: finite version

We will give a proof for a special case.

Let A be a finite set and (pa)a∈A a
probability measure on A. Let q be a measure on A such that q ≪ p.
Define a map f : A → R by

a 7→

{
qa
pa

if pa ̸= 0

0 otherwise.

It can be checked that f is the Radon-Nikodym derivative of q with respect to p.
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Categorically extending the finite version

Let Prob be the category of probabilty spaces and measure preserving maps.

Let
(Ω,F ,P) be a probability space.

Define Mn(Ω,F ,P) as the set

{µ | µ ≤ nP} ,

together with the total variation metric.

Define RVn(Ω,F ,P) as the set

Mble(Ω, [0, n])/ =P,

together with the L1-metric (multiplied by a factor 1/2).

These are complete metric spaces (Riesz-Fischer).
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Categorically extending the finite version

Let Probf be the full subcategory of Prob of finite probability spaces.

Let
s : (A, p) → (B, q) be a measure-preserving map of finite probability spaces.

Define M f
n (s) : Mn(A, p) → Mn(B, q) by the assignment

r 7→ r ◦ s−1.

Define RV f
n (s) : RVn(A, p) → RVn(B, q) by sending a map g : A → [0, n] to

the map B → [0, n], which is defined by

b 7→

{
1
qb

∑
s(a)=b pag(a) if qb ̸= 0

0 otherwise.

These are 1-Lipschitz maps.
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Categorically extending the finite version

Let CMet1 be the category of complete metric spaces and 1-Lipschitz maps.

We have two functors:

Probf CMet1.

M f
n

RV f
n

By the finite Radon-Nikodym theorem, we see that

Probf CMet1.

M f
n

RV f
n

∼=
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Categorically extending the finite version

It follows that also the right Kan extensions along i : Probf → Prob are
isomorphic.

Probf CMet1

Prob

M f
n

RV f
n

i

∼=

∼=
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What do these Kan extensions look like?

Proposition

For a probability space Ω := (Ω,F ,P), we have for all n ≥ 1 that

Mn(Ω) → (RaniM
f
n )(Ω),

is an isomorphism.

Proof (sketch): Let Ω := (Ω,F ,P) be a probability space.

RaniM
f
n (Ω) ∼=

∫
A∈Probf

[Prob(Ω, iA),M f
n (A)]
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What do these Kan extensions look like?

Proposition

For a probability space Ω, we have for all n ≥ 1 that

(RaniRV
f
n )(Ω) ∼= RVn(Ω).

The proof for this results requires some measure theory.
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Radon-Nikodym theorem

Combining everything gives a bounded Radon-Nikodym theorem, namely

{µ | µ ≤ nP} = Mn(Ω) ∼= RaniM
f
n ((Ω)

∼= RaniRV
f
n (Ω)

∼= RVn(Ω) = Mble(Ω, [0, n])/ =P

We can look at the colimit over all n ≥ 1,

M1Ω M2Ω . . . MnΩ . . .

RV1Ω RV2Ω . . . RVnΩ . . .

∼= ∼= ∼=

This gives us

{µ | µ ≪ P} ∼= {f : Ω → [0,∞) | f is integrable} / =P .
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Remark on conditional expectation

For a probability space Ω, we know what (RaniM
f
n )(Ω) and (RaniRV

f
n )(Ω) look

like.

What can we say about Mn(g) := (RaniM
f
n )(g) and RVn(g) := (RaniRV

f
n )(g) for

g : Ω1 → Ω2?
They are the unique morphisms such that

MnΩ1 MnΩ2 RVnΩ1 RVnΩ2

M f
nA RV f

nA

Mn(g) RVn(g)

commute for morphisms Ω2 → A.

Ruben Van Belle Kan extensions in probability theory QF73 35 / 44



Remark on conditional expectation

For a probability space Ω, we know what (RaniM
f
n )(Ω) and (RaniRV

f
n )(Ω) look

like.
What can we say about Mn(g) := (RaniM

f
n )(g) and RVn(g) := (RaniRV

f
n )(g) for

g : Ω1 → Ω2?

They are the unique morphisms such that

MnΩ1 MnΩ2 RVnΩ1 RVnΩ2

M f
nA RV f

nA

Mn(g) RVn(g)

commute for morphisms Ω2 → A.

Ruben Van Belle Kan extensions in probability theory QF73 35 / 44



Remark on conditional expectation

For a probability space Ω, we know what (RaniM
f
n )(Ω) and (RaniRV

f
n )(Ω) look

like.
What can we say about Mn(g) := (RaniM

f
n )(g) and RVn(g) := (RaniRV

f
n )(g) for

g : Ω1 → Ω2?
They are the unique morphisms such that

MnΩ1 MnΩ2 RVnΩ1 RVnΩ2

M f
nA RV f

nA

Mn(g) RVn(g)

commute for morphisms Ω2 → A.

Ruben Van Belle Kan extensions in probability theory QF73 35 / 44



Remark on conditional expectation

In particular, these commute for all 1E : Ω2 → 2E .

We conclude that for all
E ∈ F2

Mn(g)(µ) ◦ 1−1
E = µ ◦ 1−1

g−1(E),

and ∫
E

RVn(g)(f )dP2 =

∫
g−1(E)

f dP1

This means that

Mn(g)(µ) = µ ◦ g−1 and RVn(g)(f ) = E[f | g ].
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Summary

Probf CMet1

Prob

M f
n

i

RV f
n

Mn

RVn

∼=

∼=

(Bounded) Radon-Nikodym theorem:

Mn(Ω) = {µ | µ ≤ nP} RVn(Ω) = Mble(Ω, [0, n])/ =P .

Conditional expectation:

RVn(g)(X ) = E[X | f ].
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3.2 Martingales
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Martingale convergence

Consider a filtered probability space (Ω,F , (Fn)n∈N,P).

The space Ω := (Ω,F ,P) is the limit of

Ω1 Ω2 Ω3 . . . Ωm . . .s21 s32

in Prob, where Ωm := (Ω,Fm,P |Fm).
Suppose that RVn : Prob → CMet1 preserves this limit, then

RVn(Ω) ∼= lim
m

RVn(Ωm)

∼= {(Xm)m | RVn(sm1m2)(Xm1) = Xm2 for m2 ≤ m1}
∼= {(Xm)m | E[Xm1 | Fn2 ] = Xm2 for m2 ≤ m1}
∼= {(Xm)m | martingale }

It follows that for every martingale (Xm)m such that Xm ≤ n for all m, there exists
a random variable X : (Ω,F) → [0, n] such that for all m,

E[X | Fm] = Xm.
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Enriched categories

Ordinary categories: A set of morphisms between two objects.

V-enriched categories: An object in V of morphisms between two objects.
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Enrichment over CMet1

Everything from the first part still works when everything is enriched over CMet1.

Probf CMet1

Prob

M f
n

i

RV f
n

Mn

RVn

∼=

∼=

How is Prob enriched over CMet1?
Answer: Prob(Ω1,Ω2) is the completion of

{f : Ω1 → Ω2 | measure preserving}

with the pseudometric

d(f1, f2) := sup
{
P1(f

−1
1 (A)∆f −1

2 (A)) | A ∈ F2

}
.
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RVn preserves cofiltered limits

For any finite probability space A, we always have a map

colimiProb(Ωi ,A) → Prob(Ω,A).

Since {f : Ω → A | f is Fi -measurable for some i} is dense in Prob(Ω,A), this is
an isomorphism. We can now conclude:

RVn(Ω) ∼=
∫
A

[Prob(Ω,A),RV f
n (A)]

∼=
∫
A

[colimiProb(Ωi ,A),RV
f
n (A)]

∼=
∫
A

lim
i
[Prob(Ωi ,A),RV

f
n (A)]

∼= lim
i

∫
A

[Prob(Ωi ,A),RV
f
n (A)]

∼= lim
i
RVn(Ωi )

Remark: We did not use anything about RV f
n .
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Summary

Enriched version of

Probf CMet1

Prob

M f
n

i

RV f
n

Mn

RVn

∼=

∼=

(Bounded) Radon-Nikodym theorem:

Mn(Ω) = {µ | µ ≤ nP} RVn(Ω) = Mble(Ω, [0, n])/ =P .

Conditional expectation:

RVn(g)(X ) = E[X | f ].

Martingale convergence: RVn preserves cofilitered limits.

Weaker Kolmogorov extension theorem : Mn preserves cofilitered limits.
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What about left Kan extensions?

Let H : Probf → CMet1 be a functor. Suppose that Ω is a probability space that
is not essentially finite.
Then Prob(A,Ω) = ∅ for all finite probability spaces A and

LaniH(Ω) =

∫ A

Prob(A,Ω)× HA = ∅.
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